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1 Introduction
The purpose of the Simulation Validations Suite (SVS) is to validate each new version of the CMS simulation
software, comparing values associated with low level simulation quantities, typically derived from hits, geometry,
magnetic field or other Geant4 [1] objects, with reference values. An expanded or full validation for special releases
will include higher level, physics, quantities. In the future, the scope of the project will be extended to include
digis and fast simulation.

2 General Description
The validation process is divided into three stages to make the process clear, and the software easy to maintain:

• Individual detector system, geometry, or field packages do “on the fly” analysis on a set of validation sam-
ples, producing ROOT [2] output files. The initial packages include: SimG4TackerValidation,
SimG4EcalValidation, SimG4HcalValidation, SimG4MuonValidation, SimG4FieldValidation, and
SimG4GeomValidation. Each package consists of one or more tests associated with sub-detectors within
a detector system, barrel/endcap and preshower in the case of the Ecal. Different tests have been defined
and configured in some sub-detectors to use either low-levelor high-level simulation information in the val-
idation. The same test may be run many times under different conditions, or samples. ROOT trees with
pre-processed information is written into ROOT browsable files. This information typically includes bare
hit quantities or complex ones derived from hits or Geant4 objects.

• Macros are run on the ROOT trees and process information intovalidation objects, such as numbers in ASCII
files and/or histograms.

• OVAL is the integration tool, used for launching the Suite from the SimG4Validation directory. Histogram
comparison tools, such as the Statistical Tool Kit [5] or ROOT is used to compare the “current” histograms
values with those stored in reference files. The differencesare stored in ASCII files.

• OVAL is used to find differences between the ASCII files with current difference information and reference
ASCII files.

3 Sub-detector Package Description
3.1 Tracker

3.1.1 Description

TheSimG4TrackerValidation package is intended to test simulation of the tracking system comprised of
the Silicon Strip Tracker and Pixel Detector System. The former consists of the Tracker Inner Barrel (TIB),
Tracker Outer Barrel (TOB), Tracker Inner Disks (TID) and Tracker End Cap (TEC) while the latter includes the
Pixel Barrel and Pixel End Cap. (The Pixel End Cap is also referred to as the Forward Pixel Detector.) The tests
are performed for each subsystem separately due to the difference in their geometry.

TheSimG4TrackerValidationpackage accesses collections of hits belonging to different subsystems through
TrackerHitsObject and produces a ROOT tree with the simulated hit information.

Simple analyses are implemented in ROOT macro scripts to produce histograms associated with the final quantities
to validate. In theSimG4TrackerValidation package, samples may be generated using the “Particle Gun”,
or read from an HBOOK file (HepEVT format) using the “Ntuple Reader”. The two available options are controled
from the OvalFile file.

3.1.2 ROOT Tree Content

One assistant class,SimHitTrackerTree provides the interface to ROOT. The information stored in the ROOT
tree is divided into two branches:

1. Global Information

Event Number
Run Number
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Total Number of Incident Particles
Incident Particle type
Incident Particle Energy
Incident Particle Momentum
Incident Particleη
Incident Particleφ
Number of vertices
Vertex coordinates
Total Number of Hits

2. Hit information

Subsystem type
ID of the detector unit (in Geant internal numbering)
Hit position (entry and exit point coordinates in the local system, local position and direction)
Deposited Energy of Hit
ID of the track that produced a hit
Process and particle momentum and type
Time-of-flight

3.1.3 Validation Quantities

The comparison tests are performed on the following quantities, constructed from the ROOT tree leaves:

• Sample: Single muons, electrons or pions withpT =15 GeV, 1500 events in 12 bins ofη in the range
−3 < η < 3:

• Quantities

Energy deposition
Distribution of track entry and exit points in x, y and z
Distribution of local x and y track entry point coordinates
Number of hits in each subsystem

Test variables are plotted separately for each subsysytem.Examples of Kolmogorov-Smirnov test output are
presented in Figs.1-12.

3.1.4 Run Configurations

The validation is performed currently at one level for each tracker subsystem. But the package can easily accomo-
date running more tests with different input generated events. These possible tasks are controled via the OVAL tool.
An OvalFile control file in thetest sub-directory underSimG4TrackerValidation is used to configure the
package.

The test using muons is started using the following command:

Ovalv1 run TrackerTestEtaBinMuon

3.1.5 Validation Tests

OVAL is also used to detect differencies between current andreference values stored in two separate histogram
files. Statistical tools available in ROOT -UnBinned KSTest andBinned Chi2Test - are used to compare
the sample and the reference histograms.
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Figure 1: Kolmogorov-Smirnov test example to compare energy loss in different subsystems of the Silicon Tracker.
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Figure 2: Kolmogorov-Smirnov test example to compare localx coordinates of the hits in different subsystems of
the Silicon Tracker.
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Figure 3: Kolmogorov-Smirnov test example to compare localy coordinates of the hits in different subsystems of
the Silicon Tracker.
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Figure 4: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
x-axis of the tracks in different subsystems of the Silicon Tracker.
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Figure 5: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
y-axis of the tracks in different subsystems of the Silicon Tracker.
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Figure 6: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
z-axis of the tracks in different subsystems of the Silicon Tracker.
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Figure 7: Kolmogorov-Smirnov test example to compare energy loss in different subsystems of the Pixel Tracker.
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Figure 8: Kolmogorov-Smirnov test example to compare localx coordinates of the hits in different subsystems of
the Pixel Tracker.
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Figure 9: Kolmogorov-Smirnov test example to compare localy coordinates of the hits in different subsystems of
the Pixel Tracker.
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Figure 10: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
x-axis of the tracks in different subsystems of the Pixel Tracker.
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Figure 11: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
y-axis of the tracks in different subsystems of the Pixel Tracker.
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Figure 12: Kolmogorov-Smirnov test example to compare the difference in entry and exit points along the local
z-axis of the tracks in different subsystems of the Pixel Tracker.
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3.2 Electromagnetic Calorimeter

3.2.1 Description

TheSimG4EcalValidation package is associated with the Electromagnetic Calorimeter (ECAL), both the
barrel and the endcaps, as well as with the Pre-Shower sub-detector. The two tests implemented in
SimG4EcalValidation are:ECalorimeter, andPreShower. Both tests perform a preliminary on-the-
fly analysis of basic simulation quantities, hits andG4Step objects, and store the results in a ROOT tree contained
in a ROOT file. Simple analyses are implemented in ROOT macro scripts to produce histograms associated with
the final quantities to validate. In theSimG4EcalValidation package, samples may be generated using the
“Particle Gun”, or read from an HBOOK file (HepEVT format) using the “Ntuple Reader”. The two available
options are controlled from the C-Shell script file.

3.2.2 ROOT Tree Content

One assistant class,SimHitEcalTree provides the interface to ROOT. The information stored in the ROOT tree
is divided into three branches:

1. Global Information

Event Number
Run Number
Total Number of Incident Particles
Particle Type of Every Incident Particle
Energy of Every Incident Particle
Momentum of Every Incident Particle
Vertex coordinates
Total Number of Hits in Barrel Calorimeter
Total Number of Hits in EndCap Calorimeter
Total Energy deposited in Barrel Calorimeter
Total Energy deposited in EndCap Calorimeter
Energy deposited in 1x1 crystal cluster
Energy deposited in 2x2 crystal cluster
Energy deposited in 3x3 crystal cluster
Energy deposited in 4x4 crystal cluster
Energy deposited in 5x5 crystal cluster
Energy deposited by EM Particles
Energy deposited by Hadrons Particles

2. Hit information

Hit position: etaHit, phiHit
Energy deposited of every Hit: energyEMHit, energyHadrHit
Global time

3. Step Information

Energy deposited in every X0 (radiation length): EX0[25].

3.2.3 Validation Quantities

The comparison tests are performed on the following quantities, constructed from the ROOT tree leaves:

• Lower-Level Validation for ECalorimeter

– Sample: Photon; 30GeV; 2000 Events

– Quantities
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Plot the occupancy (eta versus phi)
Plot 1-D histogram of E1, E4, E9, E16, E25
Plot 1-D histogram of Ratio: E1/E4, E4/E9, E9/E16, E16/E25,

E1/E25, E9/E25
Plot the percentage of Energy deposited in Barrel and End-Cap
Plot the longitudinal development of Shower with a single Energy

• Higher-Level Validation for ECalorimeter

– Sample: Photon; 10GeV, 20GeV, 30GeV, 40GeV, 50GeV; 2000 Events

– Quantities

Plot the E25 resolution versus the energy of incident particle
Plot the longitudinal develpment of Shower with multi-Energy

• Lower-Level Validation for PreShower

– Sample: Photon; 30GeV; 2000Evnets

– Quantities

Plot the occupancy (eta versus phi)
Plot 1-D histogram of E1, E4, E9, E16, E25
Plot 1-D histogram of Ratio: E1/E4, E4/E9, E9/E16, E16/E25,

E1/E25, E9/E25
Plot the percentage of Energy deposited in Barrel, End-Cap

and PreShower
Plot the longitudinal development of Shower with single Energy

• Higher-Level Validation for PreShower

– Sample: Photon; 10GeV, 20GeV, 30GeV, 40GeV, 50GeV; 2000 Events

– Quantities

Plot the E25 resolution versus the energy of incident particle
Plot the longitudinal development of Shower with multi-Energy
Plot the coefficient of Lead absorption versus the energy of
incident particle

3.2.4 Run Configurations

The validation is performed currently at two levels for eachof the ECAL sub-systems: barrel/endcaps, and pre-
shower detectors. The package can therefore be run in Low-Level or High-Level mode for the barrel/endcaps and
for the pre-shower. These four possible tasks are controledvia the OVAL tool. An OvalFile control file in the
test sub-directory underSimG4EcalValidation is used to configure the package. The user can choose any
individual validation level or all using one of the following commands:

Ovalv1 run EcalTest.csh.Lower-Level
Ovalv1 run EcalTest.csh.Higher-Level
Ovalv1 run PreShowerTest.csh.Lower-Level
Ovalv1 run PreShowerTest.csh.Higher-Level
Ovalv1 run

From above, it can be seen there are two C-Shell scripts:EcalTest.csh andPreShowerTest.csh. These
define the concrete task for two levels of validation via setting the number of jobs, the location of input data,
renaming the root files and making histogram comparison between current histograms and reference histograms
respectively.
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3.2.5 Validation Tests

In addition to the role in controling the tests, OVAL can alsobe used to detect differencies between current and
reference values stored in four separate ASCII files below.

EcalTest.csh.Lower-Level.ref
EcalTest.csh.Higher-Level.ref
PreShowerTest.csh.Lower-Level.ref
PreShowerTest.csh.Higher-Level.ref

The Statistics Toolkit is used to test the consistency between the contents of current and reference histograms.
The classSmartTestHisto is introduced to perform this task, by reading the data stored in the reference
ROOT file and the sample ROOT file . If the test requires binned data, histograms are created from the ROOT
tree information, otherwise, unbinned data are stored in vectors. In both cases, the Statistics Toolkit classes
are used to perform the comparison and output the results to the oval log files. As currently implemented the
SmartTestHisto class is used as an alternate option to the ROOT macro analysis. In the example provided un-
der theSimG4EcalValidation/testdirectory,Compare.cc, two methods,compareWithChi2Test()
andcompare2DWithChi2Test(), are used to compare the sample histograms with the reference histograms.

Currently, all the quantities to validate at the lower-level (as given in 3.2.3) have been applied to the comparison
with the Chi2Test method between the sample data and the reference data.

Finally, all the results will be saved to two postscript files. Examples of these are shown in Figs.13 and 14. The
1-D histograms from the sample and the reference are drawn inthe same plot to aid in evaluating the differences
between them, while for the 2-D histograms, such as the longitudianl profile and occupancy, are drawn in two plots
separately. Blue is used for the reference data and red for the sample data. PV stands for the probability value
calculated with the Chi2Test method. Because currently thesample histograms and the reference histograms are
generated with the same version of OSCAR, the histograms of the two distributions are exactly same and all values
of PV are"1".In the future, the sample histograms will come from new versions of OSCAR (or CMSSW) and
the PV values will give the differences between the results of the different versions.

3.3 Hadronic Calorimeter

3.3.1 Description

TheSimG4HcalValidation package collects different type of information about HCAL simulated hits, using
bothEndOfEvent andG4StepG4-observers. It also performs some NxN cells cluster analysis and even cluster
finding with cone algorithm. The collected information is stored in a ROOT tree. A csh scriptjob_ntuple.csh
performs the code running under OVAL, plots the histograms and compares some of them with the those in the
reference file by means of a ROOT macro. The input data sample contains 1000 single pions with p=30 GeV shot
at the center of a particular tower in the HCAL barrel with (η,ϕ)= (4,4).

3.3.2 ROOT Tree Content

The ROOT tree is divided into several branches. There is a switch which enables the information to be stored
at three levels of complexity. These three levels is denotedas L1, L2, L3 and the description of each block of
information will be denoted by a corresponding label.

The most essential primary information is collected in the block of CaloSimHit information (L1):

• nHits - number of hits;

• layerHits - number of HCAL layer to which the hit belongs;

• etaHits - hitη;

• phiHits - hitϕ;

• eHits - hit energy;

• tHits - hit time;
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Figure 13: The Results of Comparison with the Chi-Square Test for ECAL.
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Figure 14: The Results of Comparison with the Chi-Square Test for Preshower.
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• idHits - hit ID number;

• jitterHits - hit jitter with respect to the expected time of arrival.

There is a block of information dedicated to both cluster of cells within R=0.5 cone and 7x7 cells (hardwired
number, works currently only for HCAL barrel) in the evaluated around user-definedη andϕ direction, see Eta0
and Phi0 description in the next subsection, (L2):

• ecalNxNr - ECAL fraction in the cone within R= 0.5 around given direction;

• hcalNxNr - idemfor HCAL;

• hoNxNr - idemfor HO separately;

• etotNxNr - idemfor the ECAL+HCAL (redundant information);

• ecalNxN - ECAL fraction in the 7x7 cluster around given direction;

• hcalNxN - idemfor HCAL;

• hoNxN - idemfor HO separately;

• etotNxN - idemfor the ECAL+HCAL (redundant information).

There is a block of information about transverse NxN clusterprofiles in the HCAL barrel (HCAL 1x1, 3x3, 5x5
and 7x7 cells hardwired) around user-definedη andϕ direction (L2):

• nIxI - number of hits;

• iIxI - sequential number of the square to which the hit belongs;

• eIxI - energy of the hit;

• tIxI - arrival time of the hit.

There is a block containing information about the energy deposit in the HCAL scintillator layers and depths (groups
of layers) as a sum over allη andϕ cells (L2):

• nLayers - number of layers;

• eLayer - energy in each layer;

• nDepths - number of depths;

• eDepth - energy in each depth;

• eHO - energy in HO;

• eHBHE - sum of the energy in HB and HE.

Information about HF subdetector (L2) :

• elongHF - energy in the long fibers of HF;

• eshortHF -idemfor short fibers;

• eEcalHF - energy collected in the entire ECAL;

• eHcalHF -idemfor HCAL (barrel and endcap only).

Block of information about the highest-ET jet (L3) :

• nJetHits - number of CaloSimHits in the jet (integer);
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• rJetHits - distance (inη − ϕ space) of each CaloSimHit from the center of the jet;

• tJetHits - arrival time of each CaloSimHit;

• eJetHits - energy of each CaloSimHit.

Then there are global variables for this highest-ET jet (L3):

• ecalJet - ECAL fraction of the jet energy;

• hcalJet -idemfor HCAL;

• hoJet -idemseparately for outer calorimeter (HO);

• etotJet - total jet energy (redundant information);

• detaJet -η distance from ”nominal value” (see Eta0 description in the next subsection);

• dphiJet -idemfor ϕ;

• drJet -idemfor distance.

The latter three variables are used in case of the single pionshooting at the fixedη andϕ position to measure the
cluster deviation from the ”nominal” position.

There is a block containing information about all the jets above defined ET threshold (L3) :

• nJets - number of jets;

• jetE - energy of each jet;

• jetEta - each jetη;

• jetPhi - each jetϕ.

In addition, there is a special variable containing a mass ofthe two highest- ET (if any) - dijetM.

3.3.3 Validation Quantities

The validation of the new version of the simulation is assumed to be done on the basis of a comparison of several
histograms (among more than 70 plotted in total) with those previously stored in the reference file using theχ2

method of ROOT. There are 6 histograms for energy depositionin the first 6 scintillator layers closest to the
ECAL, time distribution of all SimHits and energy-weightedtime distribution of SimHits in the 7x7 matrix of
ECAL+HCAL around the pion entry point. Also included in the comparison are distributions of the number of
SimHits in the ECAL and HCAL. All other histograms contain additional information which might be required
for investigations in case of signifant discrepanceis revealed by the main comparison test. Figures 15 and 16
show examples of two distributions among the 10 selected forcomparison tests: the deposited energy in the
HCAL scintillator just behind ECAL and the energy-weighteddistribuion of the time of hits in the 7x7 matrix of
ECAL+HCAL towers around the pion direction.

3.3.4 Run Configurations

In the test area the default OSCARconfiguration.xml includes only ECAL and HCAL in the simulation. Also the
magnetic field if by default switched off in the.orcarc file (actually named as hcalValidRC in the test area).

There are 11 external parameters which can be defined in the.orcarc file cards listed in Table 1.

In the cluster analysis there is a choice to take into accountboth ECAL and HCAL energy, or only the HCAL one
(default). The corresponding control card is the first one inTable 1. The ECAL energy is always taken as it is,
while the HCAL energy for cluster analysis can be taken as either original CaloSimHit energy (default) or the one
multiplied by the corresponding sampling factors (same as in ORCA), card 2 in Table 1.
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Figure 15: Energy deposition of the pion shower in
the layer 0 (closest to ECAL).

Figure 16: Energy-weighted timing of hits in the
vicinity of pion direction.

Table 1: Set of SimpleConfigurable parameters defined as control cards

Card nubmer Variable type Defalut value Key name in .orcarc file

1 bool false SimG4HcalValidation:HcalClusterOnly

2 bool true SimG4HcalValidation:HcalSampling

3 float 0.5 SimG4HcalValidation:ConeSize

4 float 1e-20 SimG4HcalValidation:EcalHitThreshold

5 float 1e-20 SimG4HcalValidation:HcalHitThreshold

6 float 0. SimG4HcalValidation:TimeLowLimit

7 float 999. SimG4HcalValidation:TimeUpLimit

8 float 5.0 SimG4HcalValidation:JetThreshold

9 float 0.0 SimG4HcalValidation:Eta0

10 float 0.0 SimG4HcalValidation:Phi0

11 int 2 SimG4HcalValidation:InfoLevel

Card 3 defines the cone size of the jetfinder. Cards 4 and 5 set non-zero minimal CaloSimHit energy for the ECAL
and HCAL respectively. Cards 6 and 7 define the time window forthe CaloSimHit arrival. Cut 8 sets a cut on
minimal jet energy (the default value, 5 GeV, is set for HcalSampling = 1). Cards 9 and 10 stand for user-defined
η andϕ direction (for single pion shooting at the fixed position). Card 11 defines which blocks of information
described in the previous subsection are stored in the ROOT tree.

3.3.5 Validation Tests

OvalFile control file in theSimG4HcalValidationtest directory contains the configuration of the test job.
It just defines thejob_ntuple.csh as the main test script and assigns a default parameter
SimG4HcalValidation:InfoLevel=2 (from Table 1) to it.
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3.4 Geometry

3.4.1 Description

TheSimG4GeomValidation package writes out the number of volumes and materials for comparing them
with a reference version using the OVAL tool. It also tracks particles with neither physics nor magnetic field and
compares the total number of radiation lengths traversed until the end of the detector event-by-event.

If desired, it also constructs a few histograms and a ROOT tree with material budget information (number of
radiation lengths), and a text file with accumulated material budget step-by-step.

3.4.2 Validation quantities

There are two different kinds of variables printed for testing with the OVAL tool:

• The geometry summary, that is the total number of different materials in the simulation, and the total numbers
of logical volumes, physical volumes and touchables (copies of each volume).

• The number of radiation lengths after traversing all the detector. The events are read from an ntuple
/afs/cern.ch/cms/geant4rep/genntpl/murandom_disp-p10000.ntpl, that contains one
thousand muons of energy 10 TeV with randomη in the range−5.0 < η < 5.0 and randomφ, and starting
at a displaced vertex(x = 8.3, y = 1.5, z = 6.3) mm, to avoid as much as possible tracking along volume
boundaries. In fact these muons behave asgeantinos, because there is no magnetic field, and all the physics
processes except transportation are switched off.

3.4.3 Material budget information

As well as running the test, the user may choose to produce some output in the form of histograms, ROOT tree or
text file for help in understanding the differences with respect to the reference version.

Material Budget Histograms

If the parameterTestGeometry:writeHistos is set, a set of ROOT histograms is written into in a file whose
name is defined by this parameter:

• 1D profile histogram of material budget vsη

• 1D histoη

• 1D profile histogram of material budget vsφ

• 1D histoφ

• 2D profile histogram of material budget vs eta and phi

• 1D histoη vsφ

Material budget tree

If the parameterTestGeometry:writeMBTree is set, material budget information will be written into a
ROOT tree in a file whose name is defined by this parameter. The tree contains for each track:

• MB: Total material budget (sum of step length divided by radiation length for all steps)

• ETA: η direction at start of track

• PHI: φ direction at start of track

If TestGeometry:TreeAllSteps is set to 1, also the information for each step is stored (a maximum number
of 5000 steps per track are stored):

• DELTAMB: accumulated material budget
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• X: X position

• Y: Y position

• Z: Z position

• VOLUID: volume ID (constructed in alphabetical order)

• MATEID: material ID (constructed in alphabetical order)

Material budget Text File

If the parameterTestGeometry:writeMBTxt is set, an ASCII file is filled with step-by-step information
about the volume traversed and the accumulated material budget until this step. The name of the file is defined by
this parameter.

The file contains for each track a first line with

• Track number

• Eta direction at start of track

• Phi direction at start of track

then for each step:

• Accumulated track length (mm)

• Volume name1)

• Volume copy number

• Accumulated material budget (Number of radiation lengths)

• Material radiation length (rad. length / mm)

and at the end of track:

• Accumulated material budget

3.4.4 Run configuration

The oval prod command will run the test and compare the current values withthose in a reference file,
testGeometry.ref. Several parameters control the extra output in the form of histograms, ROOT tree or
text file as explained above.

3.5 Field

3.5.1 Description

TheSimG4FieldValidation package checks the tracking in the CMS magnetic field. The test compares the
deviation at the end of the track in position and direction.

1) The volume that is printed corresponds to the volume traversed in this step, which is different to the volume printed by
“/tracking/verbose” that is the volume the track is going toenter after this step.
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3.5.2 Validation quantities

The ntuple/afs/cern.ch/cms/geant4rep/genntpl/test_field.ntpl is used for this test. It con-
tains 400 single muon events in four groups of 100 events withdifferent energies: 1, 10, 100, 1000 GeV. The
muons are run ascharged geantinos, given that the physics processes are switched off.

The deviation of these tracks after traversing all CMS is compared with a reference version. This deviation is
calculated in two directions: one perpendicular to the initial track direction and toz, φ direction, and the other one
perpendicular to this first one and the initial track direction. Also the change in momentum projected in the above
mentioned two directions is checked, as well as the change inkinetic energy (that should be zero, except minimal
non-conservation by the field tracking).

3.5.3 Run configuration

The oval prod command runs the test and compare the current values with those in a reference file. The
reference file istestFieldProp.ref.

3.6 Muon System

3.6.1 Description

TheSimG4MuonValidation test checks the muon physics in GEANT4, by using 100 GeV muons. It writes
out ROOT histograms of the relevant quantities and compare these histograms with those from a reference file
using the OVAL tool.

3.6.2 Validation quantities

The test compares all the quantities that are relevant on thehigh energy muon physics in GEANT4.

The ntuple/afs/cern.ch/cms/geant4rep/genntpl/single_muon.ntpl is used to run 1000 muons
of 100 GeV. The secondary particles are killed before being tracked.

For each muon it fills the following histograms:

• Energy lost

• Energy deposited

• Deviation in position

• Deviation in angle (deg)

• Number of tracking steps

And for each type of muon process, i.e. ionization, bremsstrahlung,e+e− production, muon nuclear interaction,
decay and capture at rest, it makes histograms of the quantities:

• Total energy taken by secondaries

• Energy of secondary particles

• Angle of secondary track with respect to primary track (muon)

3.6.3 Run configuration

Theoval prod command will run the job producing the histograms and will compare them with those in a
reference file,testmuon_ref.root.
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3.6.4 Validation tests

The histograms are compared with the reference ones at the end of job using the LCG PI Statistics Testing toolkit.
This tool makes aχ2 comparison and prints the probability to obtain that chi2 value or higher. This probability
value is compared with the value of a reference file,testMuonPhysics.ref using the OVAL tool.

The following plots show an example of the histograms and thedifference between the reference sample and
another one simulated with different random numbers. One plot uses a linear scale while the other uses a log scale.
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Figure 17: Energy lost for 100 GeV muons traversing all the CMS detector

3.7 Global Validation

3.7.1 Description

TheSimG4ValidationGlobal package is currently under construction within the CMSSW framework and
is intended to test simulation of the entire detector (all sub-detectors in parallel) for expected types of physics
events with an active magnetic field. It is designed to allow reproduction of the plots from the ORCA package
ExSimHitsStatisticswithin the new framework.

The package makes use of theGlobalValidation class which acts as an event producer within the framework
adding the relevant simulated information from each sub-detector to thePGlobalSimHit object. This object is
then exported as a branch to the POOL output file,simevent.root.

ROOT macro scripts will then be used to access the root file andcreate the relevant histograms. Validation compar-
isons with respect to reference plots will then be performedin a manner similar to the existing validation packages.

3.7.2 ROOT Tree Content

In addition to the standard CMSSW output, thePGlobalSimHit object is stored in a unique branch of the
simevent.root output file. This object contains:

1. Monte Carlo
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Figure 18: Energy lost for 100 GeV muons traversing all the CMS detector

Number of vertices from Geant4
Number of tracks from Geant4
Number of raw generated particles
Position (x,y,z) of each Geant4 vertex
pT of each Geant4 track
Energy of each Geant4 track

2. Electromagnetic Calorimeter

Number of Ecal hits
Energy of each Ecal hit
Time of flight for each Ecal hit
Globalφ of each Ecal hit
Globalη of each Ecal hit
Number of preshower Hits
Energy of each preshower hit
Time of flight for each preshower hit
Globalφ of each preshower hit
Globalη of each preshower hit

3. Hadronic Calorimeter

Number of hits
Energy of each hit
Time of flight for each hit
Globalφ of each hit
Globalη of each hit
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4. Tracker

Number of Pixel hits
Globalφ of each Pixel hit
Globalη of each Pixel hit
Time of flight of forward Pixel hits
Time of flight of barrel Pixel hits
GlobalR of barrel Pixel hits
GlobalZ of forward Pixel hits
Number of Silicon hits
Globalφ of each Silicon hit
Globalη of each Silicon hit
Time of flight of forward Silicon hits
Time of flight of barrel Silicon hits
GlobalR of barrel Silicon hits
GlobalZ of forward Silicon hits

5. Muon

Number of hits
Globalφ of hits
Globalη of hits
Time of flight for DT hits
GlobalR of DT hits
Time of flight for CSC hits
GlobalZ of CSC hits
Time of flight for RPC barrel hits
GlobalR of RPC barrel hits
Time of flight for RPC forward hits
GlobalZ of RPC barrel hits

3.7.3 Validation Quantities

Validation studies will be performed on a subset of these variables as best determined by future studies.

3.7.4 Run configuration

The creation of the initial root file is handled as a typical CMSSW job, using therunP.cfg configuration file to
set the initial data source and other running conditions forthe simulation. The file used for this package can be
found in theSimG4Validation/Global/test subdirectory of the CMSSW package. The code is run using
thecmsRun -p runP.cfg command.

ROOT macros will be written which create the full suite of plots as found in the oldExSimHitsStatistics
package as well as the plots of interest for the current validation.

In the future, the validation will be performed using the OVAL tool as with the existing simulation packages.

3.7.5 Validation tests

The validation will be performed using statistical tools available in ROOT including the Kolmogorov-Smirnov test
and theχ2 test.

4 Integration and Optimization
The tool of choice for the integration of the SVS is OVAL, version 3 5 0. OVAL is a testing tool created to help
developers to detect unexpected changes in the behavior of their software. Detailed information on the OVAL
project may be found in Ref. [3].

OVAL includes the following features:
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• Executes shell commands and scripts.

• Compiles and links validation programs.

• Runs the test programs and scripts within a specified Unix environment.

• Creates on the fly the needed configuration parameter sets or uses pre-defined external configuration files.

• Executes recursively a user-specified set of targets, including a hierarchy of subdirectories.

• Allows modular, configurable sub-tests within one subdirectory.

The SVS is executed from the/SimG4Validation base directory, using the following set of commands:

eval ‘scramv1 runtime -csh‘
ovalv1 prod -nb [target1, target2..]

Here the-nb key indicates the no-build mode, since the suite libraries will be included in the simulation software
distribution from CVS. It is up to the user to execute the build commands in case a modification is made to one or
more package. If no specific target is given, every test in allpackages included in the Suite will be executed.

Although OVAL 3 5 0 has suited the needs of the SVS project at the current stage,some improvements would
allow more flexibility. For example:

• OVAL cannot extract and execute a particular test from a given target/subdirectory, if ran at a higher level
in the hierarchy of subdirectories. For example, it is not possible to run single tests within a sub-detector
package, such as ECalorimeter, Preshower, low-level mode,or high-level mode. OVAL will go down the
directory hierarchy, identify all sources of executables and scripts, and run all tests. This feature imposes a
severe limitation to the use of the modular structure of somepackages, such as SimG4TrackerValidation and
SimG4EcalValidation. In addition to reduced flexibility, there is a toll on the CPU performance.

• OVAL creates a run control file on the fly from a set of control data cards specified in the OvalFile. Op-
tionally, separate environments may be defined to change therun conditions of the test. For example,
SimG4TrackerValidation performs the same test sequentially for different pseudorapidity ranges. At the
beginning of each run of the test, the data cards associated with the pseudorapidity range are modified, and
the new values appended to the on-the-fly control file. Alternativelly, it is possible to use a run control file
resident on disk by providing its name as an argument to the executable. A different file may be passed to
the executable for each environment, that is each time the same test is run under different conditions. As
an extension of the current features, it would be nice if OVALallowed inclusions, that is the possibility
of including disk resident run control files, as well as adding data cards or overriding their values. Since
the format of run control files are different in CMSSW, with a nested structure which defines modules in
between brackets, it is not clear how it will be possible to override data cards defined in a previous module.

• OVAL always requires a reference file in order to execute the “prod” command, which includes the “diff”
step. Otherwise, the tool skips even the “run” step for the whole target.

We are aware that OVAL 59 8 has been released recently. The new release of the tool features important improve-
ments over version 35 0, including several bug fixes that were of a concern to us. We plan to switch to OVAL
5 9 8 in the near future. We also plan to continue the dialog with the developers team for further upgrades.

5 Comparison Test Optimization Studies
A validation of a simulation against real physics data or with another simulation version relies on comparing two
sets of data. There are a number of choices in this comparison, not including what type of data or distributions to
compare as listed in the preceding sections. These choices are due to the statistical nature of the comparison. For
example, the number of events to generate, the type of statistical test (e.g.χ2 or Kolmogorov-Smirnov) to use, and
whether to use binned distributions (histograms) or unbinned (event-by-event) data. In this section we present a
summary of the results of our studies. More details can be found in a separate CMS Note [4].

Studies were done using the Kolmogorov-Smirnov (KS) andχ2 tests. For the Kolmogorov-Smirnov test, we
performed the studies both for unbinned and binned data. Several software methods were used for the tests, these
are listed below.
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1. TH1:: KolmogorovTest from ROOT, which is for 1-dimensional histograms (binned data).

2. TMath::KolmogorovTest from ROOT, which can be used for both binned and unbinned data.

3. StatisticsTesting::KolmogorovSmirnovComparisonAlgorithm from the GEANT 4 HEP Statistics Project,
which is an external tool included in the LCG Physics Interface (PI) project [5]. This can be used for both
binned and unbinned data.

4. Our own user code to implement the KS test for both binned and unbinned data, since the TMath implemen-
tation had some problems as explained in the separate CMS Note [4].

5.1 Optimization study procedure

The evaluation consisted of the following steps:

1. Create 500 pairs of data sample and reference data. Each sample and reference data set has 1000 data points
taken randomly from the same parent distribution. The parent distribution shapes were chosen to represent
some of the distributions that might typically exist in the subdetector test data. The three parent distribution
shapes and variations used are listed below:

(a) Gaussian: A Gaussian distribution with a mean(µ)= 0 andσ = 1, 0.9, 0.8 and0.5. The reference
always hasσ = 1.

(b) Exponential: An exponentially decaying functione−x/λ where the reference hasλ = 10 and the
variations haveλ = 9, 8, and5.

(c) Linear: A linear distributionmx + (1 − m
2 ), from x = 0 to x = 1, where the reference has slope

m = 0, and the variations have slopes of0.1, 0.2 and0.5.

Either the unbinned data is used or, in case the binned data, a1-dimensional ROOT histogram with 100 or 10
bins is used. The lower and upper limits for the histograms are (−5, 5) for the Gaussian function;(0, 100)
for the exponential function; and(0, 1) for the linear function.

2. Compare each of the 500 samples with the corresponding reference, by performing the KS test using the
four methods given above, and recording and plotting the probability values (p-values) calculated with the
different methods.

3. Repeat the test using either 100, 500, 10000, or 100000 events. Where we keep the number of events in
the samples always equal to the number of events in the reference data that are compared to. The KS test
p-values for these are again recorded and plotted.

When two data sets each withN events are compared using the KS test, the two cumulative distributions are
compared and the maximum differenceDmax

N (x) is determined.2) One then determines, if the two data sets are
drawn from the same parent distribution, with what probability one would get a value ofDmax

N (x) as large as, or
larger than that observed. We call this the p-value for the KStest.

Figure 19 shows theDmax
N (x),

√

N/2Dmax
N (x) and p-value distributions for comparing, using an unbinnedKS

test, 500 pairs of reference and sample data, for different numbers of events. Both the reference and sample data
are taken randomly from the same parent Gaussian distribution with a width of one. It can be seen that the correct
high statistics limit is being reached,i.e. for high statistics the

√

N/2Dmax
N (x) distribution is of the expected

shape and thus the p-value distribution is approaching being flat.

5.2 Discriminating power of comparison tests

We define two quantities to express the power of a given test for discriminating between two distributions that
are different, while correctly identifying that two distributions are actually the same (statistically). When two
distributions are drawn from the same parent function, the fraction of the time that our test (wrongly) determines

2) The cumulative distribution is defined as follows: If a data set consists of N values (xi, i = 1, N ), and these are all ordered
so thatxi ≤ xj wherei < j, the cumulative function isSN (xi) = n(xi)/N wheren(xi) is the number of values less than
or equal toxi.
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Figure 19: Results of the KS tests for unbinned data comparing reference data sets to samples where both reference
and samples have 100 (1st row), 500 (2nd row), 1000 (3rd row) or 10000 (last row) events. All distributions are
taken randomly from a Gaussian with a width of1. (left) Dmax

N ; (middle)
√

N/2Dmax
N ; and (right) p-value.

they are different is called thefalse-positivefraction. The other quantity we define is called thediscrimination
efficiencyand is defined further below.

In the high statistics limit where all p-value distributions are flat and independent ofN , one can select anN -
independent p-value to set the false-positive fraction. For example, if we accept that tests with a p-value less than
0.01 (1%) signifies that the two distributions are different, then the false-postive fraction is expected to be 0.01.
Similarly, if we take tests with a p-value less than 0.1 to saythat two distributions are different, the false-positive
fraction would be 0.1. The larger the false-positive fraction the more histograms will be flagged as different
when they could very well be the same (statistically). The false-positive fraction therefore determines how many
histograms we have to look at manually. We want this to be as small as possible, though this is less important than
having a high discrimination efficiency for a validation task.

One cannot appreciate the discriminating power by just looking at the p-value in figure 19. For example, one cannot
see how much better a comparison using 1000 events is than oneusing only 100 events. To do that we should look
at comparisons where the two distributions being compared are taken from different parent distributions.

Figure 20 shows the p-value distributions for comparing Gaussian reference data sets withσ = 1 with Gaussian
sample distributions with varying values ofσ. Results for comparisons using 1000 events per data set are shown as
well as those from comparisons of data sets with 100 events. It can be seen that the mean p-value decreases more
rapidly for the 1000 event sample comparisons, when the Gaussian width decreases. This means the discrimination
is far more effective when using 1000 event samples comparedto using 100 event samples. We need to express
this quantitatively.

When comparing two distributions that are actually different, thediscrimination efficiencyis defined as the fraction
of time our test will find them different. For example, compare a reference Gaussian withσ = 1 with a sample
Gaussian distribution with aσ = 0.8 and each with 1000 events. If we set thecritical p-valueequal to 0.02 as the
p-value below which a test will identify the two to be different, then from Fig. 20 we see that the discrimination
efficiency is about 0.5. I.e. in only about half the time will we actually say the two distributions are different.
The false-positive fraction for this p-value would be about0.02 (if we were in the limiting high statistics case.)
Although this is a small false-positive fraction, the discrimination efficiency is low. If we set the critical p-value to
0.2, the discrimination efficiency would be about 0.998, while the false-positive fraction would be about 0.2, this
is much more preferable for our task at hand. It can be seen that if we scan the critical p-value from 0 to 1, we
can obtain a curve for the discrimination efficiency versus false-postive fraction. Rather than rely on the limiting
case to get the false-positive fraction, we integrate the p-value distributions (like those in Fig. 19) to obtain more
accurate results.

The discriminating power of a test is best shown by the discrimination efficiency versus false-positive fraction
curve. We obtained these curves for a number of different conditions.
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Figure 20: Results for p-values of KS tests for unbinned datacomparing Gaussian (σ = 1) reference data sets
with samples with different Gaussian widths: (top)σ = 1, (2nd row)σ = 0.9, (3rd row)σ = 0.8, and (bottom)
σ = 0.5. (left) Each of the 500 sample and reference data sets have 1000 events each; (right) Each of the 500
sample and reference data sets have 100 events each.
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Figure 21: Efficiency in discriminating Gaussian distributions with different widths plotted against the false-
positive fraction as explained in the text. The results wereobtained from KS tests for unbinned data comparing
reference data sets withN events andσ = 1 to samples withN events and different Gaussian widths: (left)
σ = 0.9, (middle)σ = 0.8, (right) σ = 0.5. (green pentagrams)N = 100, (cyan dots)N = 500, (magenta
crosses)N = 1000, and (blue double-crosses)N = 10000.
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Figure 22: Efficiency in discriminating Exponential distributions with different decay constants plotted against
the false-positive fraction as explained in the text. The results were obtained from KS tests for unbinned data
comparing reference data sets withN events andλ = 10 to samples withN events and different decay constants:
(left) λ = 0.9, (middle)λ = 0.8, (right) λ = 0.5. (green pentagrams)N = 100, (cyan dots)N = 500, (magenta
crosses)N = 1000, and (blue double-crosses)N = 10000.
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Figure 23: Efficiency in discriminating linear distributions with different slopes plotted against the false-positive
fraction as explained in the text. The results were obtainedfrom KS tests for unbinned data comparing reference
data sets withN events and slope= 0 to samples withN events and different decay constants: (left) slope= 0.1,
(middle) slope= 0.2, (right) slope= 0.5. (green pentagrams)N = 100, (cyan dots)N = 500, (magenta crosses)
N = 1000, and (blue double-crosses)N = 10000.
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Figures 21, 22, and 23, show the results for comparing Gaussian, exponential, and linear distributions, respectively.
Each discrimination efficiency versus false-positive plotcontains the results for comparisons using 100, 500, 1000
or 10000 event samples.

As expected, there is a compromise between discrimination efficiency and false-postive fraction. Higher discrim-
ination efficiencies leads to higher false-positive fractions. Also with 10000 events, a near 100% discrimination
efficiency is possible at small false-positive fractions, even for smaller (10%) differences between the reference
and sample distributions. Conversely, acceptable discrimination efficiencies using 100 event samples are only pos-
sible if one accepts false-positive fractions of almost 100%, unless the reference and sample distributions are very
different. The actual choice of the number of events to use isdictated by the size of the difference one wants to de-
tect. For detecting∼20% differences in Gaussian or exponential distributions,1000 event samples give reasonable
discrimination efficiency without too high a false-positive fraction. Linear distributions, (probably distributions
that change more slowly) seem to require larger event samples to obtain the same discrimination power.

5.3 Using unbinned and binned data for KS test comparisons

The intent of the validation package is to use histogrammed variables for comparisons rather than unbinned data,
as histograms take up much less storage and are easier to handle and visualize. In this section we compared the
results of using the KS test for binned and unbinned data, to see the effect on the discrimination power when the
data are binned.

The Kolmogorov-Smirnov test is intended for unbinned data,however, if one understands the issues, there is no
real problem with using it for binned data. The basic issue isthat the deviationDmax

N will not be distributed as
expected so that the probability distribution will not be flat, even in the high statistics limit. This means that the
calculated p-value using the standard (unbinned) algorithm is not “correct”. We can still use the KS test for binned
data, we just cannot rely on the p-value returned by the test to follow the expected distribution. Since we can obtain
the p-value distribution ourselves in a Monte Carlo study, we do not have to make this assumption.
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Figure 24: Efficiency in discriminating Gaussian distributions with different widths plotted against the false-
positive fraction as explained in the text. The results wereobtained from KS tests for unbinned data (points)
and binned data using 100 bins (line). Comparisons are for pairs of reference data withN events andσ = 1 with
samples containingN events and different Gaussian widths: (left)σ = 0.9, (middle)σ = 0.8, (right) σ = 0.5.
(green pentagrams, dot-dash line)N = 100, (cyan dots, dotted line)N = 500, (magenta crosses, dashed line)
N = 1000, and (blue double-crosses, solid line)N = 10000.

Figure 24 shows the results for comparing the different distributions using the KS test with unbinned data with
the results using binned data. Each discrimination efficiency versus false-positive plot contains the results for
comparisons using 100, 500, 1000 or 10000 event samples.

One would have expected that the KS test using unbinned data to be a more powerful discrimination tool than
when using binned data. This would be expected to be more noticeable as the number of bins used is decreased.
These results and those for comparing exponential and linear distributions show surprisingly that the KS test when
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using binned data can be equally as powerful as when using unbinned data. However the same performance in
discrimination efficiency at a given false-positive fraction is achieved at a higher p-value when using binned data.
This is shown in Figs. 25.
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Figure 25: The p-value needed to obtain a given false-positive fraction, comparing results from KS tests for
unbinned data (points) and binned data using 100 bins (line). Comparisons are for pairs of reference data withN
events with samples containingN events, and for the different distributions (left) Gaussian, (middle) exponential,
(right) linear. (green pentagrams, dot-dash line)N = 100, (cyan dots, dotted line)N = 500, (magenta crosses,
dashed line)N = 1000, and (blue double-crosses, solid line)N = 10000.

5.4 Comparison of KS tests withχ2-tests

Theχ2 test is a commonly used statistic for comparing if two distributions are from the same parent function (i.e.
if they match).

We used aχ2 test statistic coded by us and is defined as follows. For two histograms, one with entriesni and the
othermi, wherei = 1 to 100 (number of bins), and

∑

ni =
∑

mi = N (same total number of entries), theχ2 is
given by:

χ2 =
N

∑

i=1

(ni − mi)
2

ni + mi
, for i where (ni + mi) 6= 0 (1)

The number of degrees of freedomndf= Nnzb − 1. WhereNnzb is the total number of bins whereni andmi are
not both zero. If all bins are populated thenNnzb = N . Thendf is one less thanNnzb because we effectively
constrain the total number of entries in the two histograms to be the same. This counts as one constraint.I.e. one
does not test the agreement of the total number of events in the two histograms. If allni andmi are large enough
(e.g.larger than 5), it can be shown that statistic of Eq.(1) follows aχ2 distribution withN −1 degrees of freedom.
Thus for large enoughN the p-value distribution will be flat.

Figure 26 shows the distributions ofχ2, χ2/ndf , and p-value using the the statistic of Eq.(1) for differenttotal
number of events. The two histograms were drawn from the sameparent Gaussian function with a mean of zero
andσ = 1. It can be seen that the p-value distribution approaches being flat for largeN .

Theχ2 statistic given by the ROOT TH1 class, TH1::Chi2Test, in version 4.04.02f of ROOT it is defined slightly
differently, but is the same when the two data samples have the same number of entries. However the number of
degrees of freedom by default isndf= Nnzb. Version 4.04.02f has an incorrect calculation of the p-value as the
wrongχ2 andndf is used in the call to TMath::Prob to calculate the p-value.3) This leads to a statistic that does not

3) The parameters passed, from inside TH1::Chi2Test, to TMath::Prob isχ2/2 andndf/2, whereas it should just beχ2 and
ndf. This may be because of an earlier implementation of TMath::Prob. Since the incomplete Gamma function is used,
the parameters passed to that function should be half theχ2 andndf values. However inside TMath::Prob itself, the passed
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Figure 26: Results ofχ2 tests for binned data using 100 bins comparing reference data to samples where both
reference and sample data sets have 100 (1st row), 500 (2nd row), 1000 (3rd row) or 10000 (last row) events. All
data are taken randomly from a Gaussian with a width of1. The user-defined definition ofχ2 is used as explained
in the text. (left)χ2; (middle)χ2/ndf; and (right) p-value.

follow an actualχ2 distribution and the probability is not flat. Nevertheless we also tested using this this statistic
“as-is”, since this is used in the validation packages, and we get similar results to using our user-coded statistic.

Figures 27– 29 show the results for comparing Gaussian, exponential, and linear distributions using the KS test
with binned data with the results of aχ2 test with 100 bins. Each discrimination efficiency versus false-positive
plot contains the results for comparisons using 100, 500, 1000 or 10000 event samples. Results using both the
user-definedχ2 statistic are shown.

These results seem to show that theχ2 test performs more poorly compared to the KS test.

5.5 Conclusions from Comparison Test Studies

The first preliminary conclusion is that the KS test using binned data can be just as powerful in a discrimination
test as using unbinned data, but the p-value must be set lowerwhen using binned data.

The second preliminary conclusion is that the KS test using binned data is preferred over aχ2 test as it is a more
power discrimination tool.

These conclusions are preliminary because we are still trying to understand two unexpected results:

1. The discrimination power when using the KS test is almost the same using binned data as with unbinned,
and moreover, seems to be unaffected when the number of bins is reduced from 100 to 10.

2. The discrimination power in theχ2 test is better with 10 bins than 100 bins, and for the Gaussiandistribu-
tions, the 10 bins discrimination is even better than the KS test discrimination.

Results for comparisons to a (fixed) function is being done tofurther check and better understand these results. A
more detailed and full report is under preparation [4].

6 Exernal Tools
OVAL [3] is the main tool used in SVS to control its execution and perform comparisons. This tool enables one
to compare values in an ASCII file with those in a reference file. The user defines a set of tolerances for the
quantities of interest, and OVAL returns a “DIFF” message inan output file when the difference is outside the
tolerance range. The evaluation of the usage of OVAL in the SVS project is included in Section 4. The SVS team

parameters are already divided by two.
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Figure 27: Efficiency in discriminating Gaussian distributions with different widths plotted against the false-
positive fraction as explained in the text. The results wereobtained from KS tests for binned data (points) and
from the user-definedχ2-tests for binned data (line) using 100 bins. Comparisons are for pairs of reference data
containingN events havingσ = 1 with samples containingN events and different Gaussian widths: (left)σ = 0.9,
(middle)σ = 0.8, (right)σ = 0.5. (green pentagrams, dot-dash line)N = 100, (cyan dots, dotted line)N = 500,
(magenta crosses, dashed line)N = 1000, and (blue double-crosses, solid line)N = 10000.
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Figure 28: Efficiency in discriminating Exponential distributions with different decay constants plotted against the
false-positive fraction as explained in the text. The results were obtained from KS tests for binned data (points)
and from the user-definedχ2-tests for binned data (line) using 100 bins. Comparisons are for pairs of reference
data containingN events havingλ = 10 with samples containingN events and different decay constants: (left)
λ = 0.9, (middle)λ = 0.8, (right) λ = 0.5. (green pentagrams, dot-dash line)N = 100, (cyan dots, dotted line)
N = 500, (magenta crosses, dashed line)N = 1000, and (blue double-crosses, solid line)N = 10000.
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Figure 29: Efficiency in discriminating linear distributions with different slopes plotted against the false-positive
fraction as explained in the text. The results were obtainedfrom KS tests for binned data (points) and from the
user-definedχ2-tests for binned data (line) using 100 bins. Comparisons are for pairs of reference data containing
N events having slope= 0 with samples containingN events and different slopes: (left) slope= 0.1, (middle)
slope= 0.2, (right) slope= 0.5. (green pentagrams, dot-dash line)N = 100, (cyan dots, dotted line)N = 500,
(magenta crosses, dashed line)N = 1000, and (blue double-crosses, solid line)N = 10000.

is in contact with the OVAL developers, who are open to suggestions. Requests are coming as decisions are made
during the migration process to CMSSW.

Tools other than OVAL are being tested for histogram comparision. The two obvious options are the Statistical
Tool Kit [5], and the tests available within ROOT [2].

The Statistical Tool Kit is a general purpose tool for statistical analysis, which follows the tool kit philosophy,
and is designed to be flexible and extensible. It is component-based, allowing re-use and integration in different
frameworks, and has no dependence on any specific analysis tool. The user layer bridges the core statistical
component and the user’s analysis, which may be based on different frameworks such as AIDA or ROOT. The
user layer shields the user from the underlying algorithms and design, and only deal with the user’s analysis
objects and the choice of comparison algorithm. The kit currently supports a very complete statistics software
suite for comparison of two binned and unbinned distributions, including Anderson-Darling, Chi-squared, Fisz-
Cramer-von Mises, Tiku tests (binned), Creamer-von Mises,Goodman, Kolmogorov-Smirnov, Kuiper, and Tiku
tests (unbinned). The Statistical Tool Kit is currently being used by the Geant4 physics validation group within the
LCG Simulation Validation project. The current version of SVS uses the Statistical Tool Kit in the Muon and Ecal
packages.

ROOT is an analysis framework widely used in running experiments. ROOT is not a software project that special-
izes in statistical tools, but the Chi-square and Kolmogorov-Smirnov tests are made available through methods of
its histogram class.

While the Statistical Tool Kit is a project specializing on statistical tools and provides a large variety of goodness-
of-fit tests, ROOT satisfies the current needs of the SVS, and allows one to perform the tests within the same macro
file used to analyze the ROOT trees produced by the validationpackages. The most complete solution in the long
term could be to use the Statistical Tool Kit as an external library loaded into ROOT. This option would allow the
Simulation Validation Group, and CMS in general, to benefit from the large variety of tests in the tool kit, while
keeping the analysis within the ROOT framework.

The SVS team performed studies to verify the consistency between the Chi-squared and Kolmogorov-Smirnov test
results obtained from the Statistical Tool Kit and from ROOT.

6.1 Comparing Statistics Toolkit with ROOT Statistics Methods

As an initial step towards evaluating software tools for statistical comparison of binned and unbinned samples,
we have tested the Chi-squared methods available in ROOT andin PI/StatisticsTesting package. ROOT v4.04.02
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and PI v1.3.3 were used in this test. It needs to be pointed outthat in this processes we used modified class
StatisticsComparator, with the interface to ROOT histograms replacing the default interface to AIDA histograms.
The modified source code was provided to us by the StatisticsTesting developers, via private communication.

The test is based on a series of 5,000 trials. Each trial contains 4 steps :

• creating two 1-dimentional ROOT histograms (TH1F), with 100 bins in the range from 0.5 to 1.5 (the actual
number of bins is 102, with 0-bin to hold underflow, and bin 101to hold overflow)

• filling each histogram with 10,000 Gaussian distributed random seeds, of the same MEAN=0.5 and differ-
entσ’s, σ1=0.3 andσ2=0.31

• performingχ2 test using ROOT TH1::Chi2Test() method, for the two histograms; underflow and overflow
of the distributions were included.

• performingχ2 test using the PI/StatisticsTesting Chi2ComparisonAlgorithm class; underflow and overflow
of the distributions were included

In each trial we looked at the two values of the probability and pvalue, calculated with the use of these two different
software packages. The difference between the two pvalues,pvalue(ROOT)-pvalue(StatisticsTesting), is presented
in Fig. 30.
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Figure 30: Comparison of pvalues obtained using ROOT and using the Statistics Toolkit.

We have noticed that there were no difference in computing the χ2 of the two binned samples. However, there
is a difference in computing the NDF. Since the number of entries both histograms was always the same, the
NDF is typically equal the number of bins minus 1. However, the ROOT TH1::Chi2Test() methods checks if a
specific i-th (j-th, k-th, etc.) bin is empty in both histograms and, in this case, recursively reduces NDF by 1. In
the Chi2ComparisonAlgorithm of the PI/StatisticsTestingthe NDF seems to be always equal the number of bins
minus 1. Further differences are likely to lay in the use of different software (sub)packages to perform the necessary
mathematics involved in the calculation of the probability, in particular, the use of different implementations of the
Gamma-function.

As a cross-check, in each trial we have taken theχ2 and the NDF computed by the Chi2ComparisonAlgorithm
(provided cases where NDF was equal to the one computed by ROOT TH1::Chi2Test()) and recalculated proba-
bility using ROOT TMath::Prob() method. The result was always practically identical to the one computed by the
ROOT TH1::Chi2Test() method, as shown in Fig. 31.

In the case of comparing two identical histograms (χ2 = 0) both packages always calculate the probability to be 1.
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Figure 31: Comparison of pvalues obtained using ROOT and using the Statistics Toolkit when NDF is the same
and using the same function in both cases to calculate the pvalue from theχ2 and NDF value.

We have also performed timing tests for these two implementations of the Chi-squared test, based on the 5,000
trials. In the timing test each trial included

• at the beginning of each trial, creating the two ROOT TH1F histograms

• filling each of these two ROOT histograms with 10,000 random Gaus-distributed seeds.

• performing the “Chi2” test by either the ROOT TH1::Chi2Testmethod or the Chi2ComparisonAlgoritm.

• printing the resultingχ2, NDF and pvalue.

• deleting the histogram at the end of each trial.

ROOT TStopwatch timer was used to estimate the required CPU.As a result, we found that the all-ROOT based
test required 53.93 sec to perform 5,000 trials. It is further estimated that most of the CPU went into creating,
filling and deleting the histograms and into printing the resulting information, while the amount of CPU required
to perform the “Chi2” test itself seemed to be negligible. The test which employed the Chi2ComparisonAlgorithm
of the PI/StatisticsTesting required 5235.41 sec to perform 5,000 trials. It has to be stressed that even in the case of
comparing two identical histograms (χ2 = 0),the PI/StatisticsTesting still required∼ 0.7 sec to process one trial.
The test was done on the cmsuaf.fnal.gov cluster (Intel CPU 2.4GHz).

We would like to point out that it is not the goal or our study toinvestigate whether this striking difference in the
amount of required CPU was due to details of the coding technique (including heavy use of STL containers, often
nested, in the StatisticsTesting) or in the details of mathematical algorithms involved in the computations. For the
SVS task this timing difference is not so significant. It could be more significant though for similar tasks done in
the online, such as might be done in the online Data Quality Monitoring (DQM).

7 Maintenance and Operation
Each package developer/expert will maintain his/her own package. Either the production group or the operator on
duty will run the integrated Suite before each release and consult with the corresponding experts in case there are
differences with respect to reference values. Experts willtake corrective measures if necessary.
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8 Extensions
The current Suite validates simulation quantities from Geant4 or hit information. A natural extension is to incor-
porate digis to the validation process. This is the next stage of the project. Another extension would check the fast
simulation with respect to full simulation reference data.

A longer term extension would be to include physics quantities to compare. This will enable not only a comparison
of one simulation version with another, but also a comparison of the simulation with real data. Although a physics
validation of the simulation is complicated and likely to bedone separately, once the correct distributions are
determined, they could be included in the SVS package so thatwhen a new version of either the simulation code
or the reconstruction code is created, the suite could be used to automatically compare with previous versions for
both simulation and real data. These could be done as part of anightly build of the code. More generally, some of
the distributions used in the SVS package would be the same ones used also in the DQM, for example distributions
that monitor the alignment of the tracking detectors.
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